Home
Class 12
MATHS
Consider a series 1/2+1/(2^2)+2/(2^3)+3/...

Consider a series `1/2+1/(2^2)+2/(2^3)+3/(2^4)+5/(2^5)+.............+(lambdan)/(2^n).` If `S_n` denotes its sum to `n` tems, then `S_n` cannot be

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`:. S_(n)=(1)/(2)+(1)/(2^(2))+(2)/(2^(3))+(3)/(2^(4))+(5)/(2^(5))+"...."+(lambdan)/(2^(n))`
` =(3)/(4)+(1)/(4)((1)/(2)+(1)/(2^(2))+(2)/(2^(3))+(3)/(2^(4))+(5)/(2^(5))+"...."+(lambdan)/(2^(n))) +(1)/(2)((1)/(2)+(1)/(2^(2))+(2)/(2^(3))+"...."+(lambdan)/(2^(n))) -(1)/(4)-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n+1))`
`implies S_(n)=(3)/(4)+(1)/(4)S_(n)+(1)/(2)S_(n)-(1)/(4)-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n+1))`
`implies =(1)/(4)S_(n)=(1)/(2)-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n+1))implies S_(n)=2-(lambda_(n))/(2^(n+2))-(lambda_(n))/(2^(n-1))lt2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum to 'n' terms of 3.1^(2)+5.2^(2)+7.3^(2)+ ........

1^(2)+2^(2)+3^(2)+..........+n^(2)=(n(n+1)(2n+1))/(6)

1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.

Sum of the n terms of the series 1 . 2^(2)+2 . 3^(2)+3 . 4^(2)+..

Find the sum to 'n' terms of the series 1^(2)+3^(2)+5^(2)+.....+

The sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)+... is

The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4^(2) + 5^(2) + 2. 6^(2) + "........." is ( n ( n + 1)^(2))/( 2) when n is even. When, n is odd, the sum is :

The value of ""2^n[1.3.5 ..........(2n-3)(2n-1)] is

1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :