Home
Class 12
MATHS
If x > 0, y > 0, z>0 and x + y + z = 1 t...

If `x > 0, y > 0, z>0 and x + y + z = 1` then the minimum value of `x/(2-x)+y/(2-y)+z/(2-z)` is:

A

(a) `0.2`

B

(b) `0.4`

C

(c) `0.6`

D

(d) `0.8`

Text Solution

Verified by Experts

The correct Answer is:
C

Since, AM of `(-1)th` powers `ge(-1)th` powers of AM
`:.((2-x)^(-1)+(2-y)^(-1)+(2-z)^(-1))/(3)ge(((2-x)+(2-y)+(2-z))/(3))^(-1)`
`=[(6-(x+y+z))/(3)]^(-1)=((6-1)/(3))^(-1)=(3)/(5)" " [:.x+y+z=1]`
`((2-x)^(-1)+(2-y)^(-1)+(2-z)^(-1))/(3)ge (3)/(5)`
or `(1)/(3)[(1)/(2-x)+(1)/(2-y)+(1)/(2-z)]ge (3)/(5)`
`implies (1)/(2-x)+(1)/(2-y)+(1)/(2-z)ge (9)/(5)`
or `(2)/(2-x)+(2)/(2-y)+(2)/(2-z)ge (18)/(5)`
or `1+(x)/(2-x)+1+(y)/(2-y)+1+(z)/(2-z)ge (18)/(5)`
or `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge (18)/(5)-3`
Hence, `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge (3)/(5)=0.6`
`implies (x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge 0.6`
Thus, minimum value of `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)` is 0.6.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are integers and x ge 0 , y ge 1 , z ge 2 , x+y+z = 15 , then the number of values of the ordered triplet (x,y,z) is :

If x, y, z are positive integers then value of expression (x+y)(y+z)(z+x) is

If the planes x + 2y + kz = 0 and 2x+y - 2z = 0 are at rt. angles, then the value of k is:

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

If Delta= [[0 , x , -y ],[-x , 0 , z],[ y , -z , 0 ]] then

If the system of equation : x + y + z = 0 , 2 x + 3y + 4z = 0 , kx + y - z = 0 has a non - zero solution , then the value of k is

If x + y + z =a and the minimum value of a/x+a/y+a/z is 81^lambda , then the value of . lambda is

The equation x^(2) + y^(2) + z^(2) = 0 represents

If the system of the equations : x - ky-z=0, kx - y - z = 0, x+y-z=0 has a non - zero solution, then the possible values of k are :

Add: 2x(z-x-y) and 2y(z-y-x)