Home
Class 12
MATHS
If sum(i=1)^(n)a(i)^(2)=lambda, AAa(i)ge...

If `sum_(i=1)^(n)a_(i)^(2)=lambda, AAa_(i)ge0` and if greatest and least values of `(sum_(i=1)^(n)a_(i))^(2)` are `lambda_(1)` and `lambda_(2)` respectively, then `(lambda_(1)-lambda_(2))` is

A

`nlambda`

B

`(n-1)lambda`

C

`(n+2)lambda`

D

`(n+1)lambda`

Text Solution

Verified by Experts

The correct Answer is:
B

`:.`AM of 2nd powes `ge` 2nd power of AM
`:.(a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+"..."a_(n)^(2))/(n) ge((a_(1)+a_(2)+a_(3)+"..."a_(n))/(n))^(2)`
`implies (lambda)/(n)ge((sum_(i=1)^(n)a_(i))/(n))^(2) :.ge(sum_(i=1)^(n)a_(i))^(2)le n lambda " " ".......(i)"`
Also,`(a_(1)+a_(2)+a_(3)+"..."a_(n))^(2)=a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+"..."a_(n)^(2)+2suma_(1)a_(2)=lambda+2suma_(1)a_(2)gelambda`
`:.(sum_(i=1)^(n)a_(i))^(2)le lambda" " ".......(ii)"`
From Eqs. (i) and (ii), we get
`lambdale(sum_(i=1)^(n)a_(i))^(2)le n lambda`
`:.lambda_(1)=nlambda" and "lambda_(2)=lambda`
Then, `lambda_(1)-lambda_(2)=(n-1)lambda`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If a_(1),a_(2),a_(3),a_(4) and a_(5) are in AP with common difference ne 0, find the value of sum_(i=1)^(5)a_(i) " when " a_(3)=2 .

If lambda_(1) and lambda_(2) are the wavelengths of the first members of the Lyman and Paschen series respectively, then lambda_(1) : lambda_(2) is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

The value of sum_(k=1)^(13)(i^(n)+i^(n+1)) , where i=sqrt(-1) equals :

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

If lambda_1 and lambda_2 are the wavelengths of the first member of the Lyman and Paschen series respectively, then lambda_1 : lambda_2 is

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :