Home
Class 12
MATHS
Statement 1 The sum of first n terms of ...

Statement 1 The sum of first n terms of the series `1^(2)-2^(2)+3^(2)-4^(2)_5^(2)-"……"` can be `=+-(n(n+1))/(2)`... Statement 2 Sum of first n narural numbers is `(n(n+1))/(2)`

A

Statement 1 is true, Statement 2 is true, Statement 2 is a corrct explanation for Statement 1.

B

Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.

C

Statement 1 is true, Statement 2 is false.

D

Statement 1 is false, Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
A

Clearly, nth term of the given series is negative or positive according as n is even or odd, respectively.
Case I When n is even, in this case the given series is
`1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)+"..."+(n-1)^(2)-n^(2)`
`=(1^(2)-2^(2))+(3^(2)-4^(2))+(5^(2)-6^(2))+"..."+[(n-1)^(2)-n^(2)]`
`=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+"..."+(n-1-n)(n-1+n)`
`=-(1+2+3+4+5+6+"..."+(n-1)+n)=(n(n+1)/(2))`
Case II When n is odd, in this case the give series is
`1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)+"..."+(n-2)^(2)-(n-1)^(2)+n^(2)`
`=(1^(2)-2^(2))+(3^(2)-4^(2))+(5^(2)-6^(2))+"..."+[(n-2)^(2)-(n-1)^(2)]+n^(2)`
`=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+"..."+[(n-2)-(n-1)][(n-2)+(n-1)]+n^(2)`
`=-[1+2+3+4+5+6+"..."+(n-2)+(n-1)]+n^(2)` ltbr. `=-((n-1)(n-1+1))/(2)+n^(2)=(n(n+1))/(2)`
It is clear that Statement 1 is true, Statement 2 is true, Statement 2 is a corrct explanation for Statement 1.
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)+... is

(b)Find the sum of first n terns of the series 1^2+2^2+……+n^2 .

Sum of the n terms of the series 1 . 2^(2)+2 . 3^(2)+3 . 4^(2)+..

Find the sum to 'n' terms of the series 1^(2)+3^(2)+5^(2)+.....+

Sum to n terms of the series 1+(1+2)+(1+2+3)+.. ..

If n is odd then the sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)-.. .. .. .. is

Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+.....

Sum of n terms of the series 1+2 x+3 x^(2)+4 x^(3)+..,(x ne 1) is

Find the sum of n terms of the series 1+4/5+7/(5^2)+10/(5^3)+dot

Find the sum of n terms of the series 1. 2. 3+2. 3. 4+3. 4. 5+