Home
Class 12
MATHS
Find the natural number a for which sum(...

Find the natural number `a` for which `sum_(k=1)^nf(a+k)=16(2^n-1),` where the function `f` satisfies the relation `f(x+y)=f(x)f(y)` for all natural number `x , ya n d ,fu r t h e r ,f(1)=2.`

Text Solution

Verified by Experts

Given, `f(x+y)=f(x)f(y)" " "....(i)"`
and `f(1)=2" " "……(ii)"`
On putting `x=y=1` in Eq. (i), we get
`f(1+1)=f(1)f(1)=2*2`
`:.f(2)=2^(2) " " "…..(iii)"`
Now, on putting `x=1,y=2` in Eq. (i), we get
`f(1+2)=f(1)f(2)=2*2^(2)" " [" from Eqs. (ii) and (iii) "]`
`:. f(3)=2^(3)`
On, putting `x=1,y=2` in Eq. (i), we get
`f(2+2)=f(2)f(2)=2^(2)*2^(2) " " [" from Eq. (iii) "]`
`:. f(4)=2^(4)`
`vdots" " vdots " " vdots " "`
Similarly, `f(lambda)=2^(lambda),lambda in N`
`:.f(a+k)=2^(a+k),a+k inN`
`:.sum_(k=1)^(n)f(a+k)=16(2^(n)-1) implies sum_(k=1)^(n)2^(a+k)=16(2^(n)-1)`
`implies 2^(n)sum_(k=1)^(n)2^(k)=16(2^(n)-1)`
`implies 2^(n)(2^(1)+2^(2)+2^(3)+"...."2^(n))=16(2^(n)-1)`
`implies 2^(n)*(2(2^(n)-1))/((2-1))=16(2^(n)-1)`
`implies 2^(a+1)=16=2^(4)`
`impliesa+1=4`
`:. a=3`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

There exists a function f(x) satisfying f(0)=1, f'(0)=-1, f(x) gt 0 , for all x, then :

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,yinRandf(1)=7 , then sum_(r=1)^(n)f(r) is :

A function satisfying int_0^1f(tx)dt=nf(x) , where x>0 is

A real valued functio f(x) satisfies the functional equation f(x-y)=f(y)-f(a-x)f(a+y) where a is given constant and f(0) =1 f(2a-x) is equal to

For x in R , the functions f(x) satisfies 2f(x)+f(1-x)=x^(2) . The value of f(4) is equal to

Let f be function satisfying f(x+y)=f(x)+f(y) and f(x)=x^(2)g(x) , for all x and y, where g(x) is a continuous function. Then f'(x) is :

A real valued function f(x) satisfies the functional equation : f(x-y)=f(x)f(y)-f(a-x)f(a+y) , where a is given constant and f(0)=1.f(2a-x) is equal to :

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .