Home
Class 12
MATHS
If l(n)=int(0)^((pi)/(4)) tan^(n) xdx sh...

If `l_(n)=int_(0)^((pi)/(4)) tan^(n) xdx` show that `(1)/(l_(2)+l_(4)),(1)/(l_(3)+l_(5)),(1)/(l_(4)+l_(6)),(1)/(l_(5)+l_(7)),"...."` from an AP. Find its common difference.

Text Solution

Verified by Experts

We have, `l_(n)+l_(n+2)=int_(0)^((pi)/(4)) (tan^(n)x+tan^(n+2)x) dx`
`=int_(0)^((pi)/(4))tan^(n)x(1+tan^(2)x) dx`
`=int_(0)^((pi)/(4))tan^(n)x*sec^(2)xdx=[(tan^(n+1)x)/(n+1)]_(0)^((pi)/(4))=(1)/(n+1)`
Hence, `(1)/(l_(n)+l_(n+2))=n+1`
On putting `n=2,3,4,5"...."`
`:.(1)/(l_(2)+l_(4))=3,(1)/(l_(3)+l_(5))=4,(1)/(l_(4)+l_(6))=5,(1)/(l_(5)+l_(7))=6,"...."`
Hence, `(1)/(l_(2)+l_(4)),(1)/(l_(3)+l_(5)),(1)/(l_(4)+l_(6)),(1)/(l_(5)+l_(7)),"...."` are in AP with common difference1.
Promotional Banner

Similar Questions

Explore conceptually related problems

I_(m,n) = int_0^1 x^m (l_n x)^n dx equals:

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

int dx/((x^(2)+1)(x^(2)+4))= k tan^(-1) x + l (tan^(-1)) x/2 then

The value of lim_(x rarr 0) (l_(n) (1+2h) - 2l_(n) (1+h))/(h^(2)) is :

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

Subtract: 3l(l-4m+5n) ,4l(10n-3m+2l)

If l_(1) = (d)/(dx) (e^(sin x)) , l_(2) = lim_(h to 0) (e^(sin ( x+ h)) - e^(sin x))/(h) and l_(3) = int e^(sin x) * cos x dx , then

Let I_(m)=int_(0)^(pi)((1-cos mx)/(1-cos x))dx use mathematical induction to prove that l_(m)= m pi, m=0,1,2 ......

The integral int_(-1//2)^(1//2) ([x] + l_n ((1 + x)/(1 - x)))dx equals :

Why is an antibody represented as H_(2)L_(2) ?