Home
Class 12
MATHS
Find the relation between x and y:log(10...

Find the relation between x and y:`log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y " `

Text Solution

Verified by Experts

From the first equation ` log_(10)x{1+(1)/(2)+(1)/(4)+"…."+oo}=y`
`implies log_(10)x{(1)/(1-(1)/(2))}=y`
`implies 2log_(10)x=y" " "….(i)"`
From the second equation
`(1+3+5+"...."+(2y-1))/(4+7+10+"...."+(3y-1))=(20)/(7log_(10)x)`
`implies ((y)/(2)(1+2y-1))/((y)/(2)(4+3y+1))=(20)/(7log_(10)x)`
`implies (2y)/(3y+5)=(20)/(7log_(10)x)`
`implies 7y(2log_(10)x)=60y+100`
`implies 7y(y)=60y+100 " " [" from Eq. (i) "]`
`implies 7y^(2)-60y-100=0`
`:. (y-10)(7y+10)=0`
`:. y=10,yne (-10)/(7)`
[because y being the number of terms in series `implies y in N`]
From Eq. (i), we have
`2log_(10)x=10 implies log_(10)x=5`
`:.x=10^(5)`
Hence, required solution s `x=10(5),y=10`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

Find domain of f(x)=log_(10)log_(10)(1+x^(3)) .

The domain of the function : f(x)=log_(10)log_(10)(1+x^2) is :

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

Domain of the function . f(x) = [log_(10) ((5x-x^2)/(4))]^(1/2) is

Solve the following inequation . (vii) log_(10)x+2lelog_10^2x

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Differentiate the following w.r.t.x. log_(10)x+log_(x)10+log_(x)x+log_(10)10