Home
Class 12
MATHS
Find the sum of first n terms of the ser...

Find the sum of first `n` terms of the series `1^3+3xx2^2+3^3+3xx4^2+5^3+3xx6^2+ w h e n` `n` is even `n` is odd

Text Solution

Verified by Experts

Case I If n is even.
Let `n=2m`
`:. S=1^(3)+3*2^(2)+3^(3)+3*4^(2)+5^(3)+3*6^(2)+"......"+(2m-1)^(3)+2(2m)^(2)`
`={1^(3)+3^(3)+5^(3)+"......"+(2m-1)^(3)}+3{2^(2)+4^(2)+6^(2)+"....."+(2m)^(2)}`
`=sum_(r=1)^(m)(2r-1)^(3)+3*4sum_(r=1)^(m)r^(2)`
`=sum_(r=1)^(m){8r^(3)-12r^(2)+6r-1}+12sum_(r=1)^(m)r^(2)`
`=8sum_(r=1)^(m)r^(3)-12sum_(r=1)^(m)r^(2)+6sum_(r=1)^(m)r-sum_(r=1)^(m)1+12sum_(r=1)^(m)r^(2)`
`=8sum_(r=1)^(m)r^(3)+6sum_(r=1)^(m)r-sum_(r=1)^(m)1`
`=8*(m^(2)(m+1)^(2))/(4)+6(m(m+1))/(2)-m`
`=m[2m^(3)+4m^(2)+5m+2]`
`=(n)/(2)[2((n)/(2))^(3)+4((n)/(2))^(2)+5((n)/(2))+2] " "[:.m=(n)/(2)]`
Hence, `S=(n)/(2)(n^(3)+4n^(2)+10n+8)" " ".....(i)"`
Case II If n is odd.
Then, `(n+1)` is even in the case
Sum of n terms = Sum of first `(n+1)` terms `-(n+1)th` term
`=((n+1))/(8)[(n+1)^(3)+4(n+1)^(2)+10(n+1)+8]-3(n+1)^(2)`
, `=((n+1))/(8)[(n+1)^(3)+4(n+1)^(2)+10(n+1)+8]-3(n+1)^(2)`
Hence, `S=(1)/(8)(n+1)[n^(3)+7n^(2)-3n-1]`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of n terms of the series 1. 2. 3+2. 3. 4+3. 4. 5+

Find the sum to n terms of the series 1xx2+2xx3+3xx4+.. ? 1xx2+2xx3+3xx4+.. ?

Find the sum to n terms of the series . 3 xx 1^(2) + 5 xx 2^(2) + 7 xx 3^(2) + . . . . . .

(b) Find the sum to n terms of the series 1 xx 2 xx 3 + 2 xx 3 xx 4 + 3 xx 4 xx 5 + .. .

Find the sum of n terms of the series 1+4/5+7/(5^2)+10/(5^3)+dot

Find the sum to 'n' terms of the series 1^(2)+3^(2)+5^(2)+.....+

Sum of the n terms of the series 1 . 2^(2)+2 . 3^(2)+3 . 4^(2)+..

The sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)+... is

Find the sum to n terms of the series 3 xx 8 + 6 xx 11 + 9 xx 14 + . . . . . .