Home
Class 12
MATHS
Evaluate sum(m=1)^(oo)sum(n=1)^(oo)(m^(2...

Evaluate `sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n)))`.

Text Solution

Verified by Experts

Let`S=sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n)))`
`=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(((3^(m))/(m))((3^(m))/(m)+(3^(n))/(n)))`
Now, let `a_(m)=(3^(m))/(m)" and "a_(n)=(3^(n))/(n)`
Then. `S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(m)(a_(m)+a_(n))) " " "....(i)"`
By interchanging m and n, then
`S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(n)(a_(n)+a_(m)))" " ".....(ii)"`
On adding Eqs. (i) and (ii), we get
`2S=sum_(m=1)^(oo)sum_(n=1)^(oo)(1)/(a_(m)a_(n))=sum_(m=1)^(oo)sum_(n=1)^(oo)(mn)/(3_(m)3_(n))`
`=(sum_(n=1)^(oo)(n)/(3^(n)))^(2)=[1((1)/(3))+2((1)/(3))^(2)+3((1)/(3))^(3)+"..."]^(2)`
`=(S')^(2)" " "......(iii)"`
where, `S'=1((1)/(3))+2((1)/(3))^(2)+3((1)/(3))^(3)+"...+"oo`
`((1)/(3ul)S'=1((1)/(3ul))^(2)+2((1)/(3ul))^(3)+" "+"...+"oo)/((2)/(3)S'=(1)/(3)+((1)/(3))^(2)+((1)/(3))^(3)+" "+"...+"oo)`
`=((1)/(3))/(1-(1)/(3))=(1)/(2)`
`:.S'=(3)/(4)`
From E q. (iii), we get `2s=((3)/(4))^(2)`
`S=(9)/(32)`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(m)( n+r )C_(n)=

If x = sum_(n=0)^(oo) a^(n) .,y=sum_(n=0)^(oo) b^(n) , z = sum_(n=0)^(oo) (ab)^(n) , where a,blt 1 , then :

lim_(n rarr oo) sum_(r=1)^(n) r/n^(2) sec^(2) (r^(2)/n^(2)) =

If s= sum_(n=0)^(oo) a^(n) , y = sum_(n=0)^(oo) b^(n) , z= sum _(n=0)^(oo) c^(n) , where a, b c are in A.P. and |a| lt 1, |b|lt 1 , |c| lt 1 then x,y,z are in :

lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =

The sequence a_(1),a_(2),a_(3),".......," is a geometric sequence with common ratio r . The sequence b_(1),b_(2),b_(3),".......," is also a geometric sequence. If b_(1)=1,b_(2)=root4(7)-root4(28)+1,a_(1)=root4(28)" and "sum_(n=1)^(oo)(1)/(a_(n))=sum_(n=1)^(oo)(b_(n)) , then the value of (1+r^(2)+r^(4)) is

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

lim_(n rarr oo) sum_(r=1)^(n) 1/n sec^(2) ((rpi)/(4n)) =

lim_(n rarr oo) (1-n^(2))/(sum n)=