Home
Class 12
MATHS
The value of sum(i=0)^oosum(j=0)^oosum(k...

The value of `sum_(i=0)^oosum_(j=0)^oosum_(k=0)^oo1/(3^i3^j3^k)` is

Text Solution

Verified by Experts

Let `S=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k)) " " [i nejnek]`
We will first of all find the sum without any rsetriction on `I,j,k`
Let `S_(1)=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))=(sum_(i=0)^(oo)(1)/(3^(i)))^(3)`
`((3)/(2))^(3)=(27)/(8)`
Case I If `i=j=k`
Let `S_(2)=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))`
`=sum_(i=0)^(oo)(1)/(3^(3i))=1+(1)/(3^(3))+(1)/(3^(6))+"..."=(1)/(1-(1)/(3^(3)))=(27)/(26)`
Case II If `i=j=k`
Let `S_(3)=sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k))=(sum_(i=0)^(oo)(1)/(3^(2i)))(sum_(k=0)^(oo)(1)/(3^(k)))" " [:.knei}`
`=sum_(i=0)^(oo)(1)/(3^(2i))((3)/(2)=(1)/(3^(i)))sum_(i=0)^(oo)(3)/(2)*(1)/(3^(2i))-sum_(i=0)^(oo)(1)/(3^(3i))`
`=(3)/(2)*(9)/(8)-(27)/(26)=(135)/(208)`
Hence required sum, `S=S_(1)-S_(2)-3S_(3)`
`=(27)/(8)-(27)/(26)-3((135)/(208))=(27xx26-27xx8-3xx135)/(208)=(81)/(208)`.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate (47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

Let A = [a_(ij)]_(3xx 3) If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 hold for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

Knowledge Check

  • sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :

    A
    `(n(n+1)(n+2))/(3)`
    B
    `Sigman^(2)`
    C
    `""^(n)C_(3)`
    D
    `""^(n+2)C_(3)`
  • If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

    A
    `(n+1)/( n )`
    B
    `( n )/( n + 1)`
    C
    `(n-1)/( n ) `
    D
    `( n )/(n-1)`
  • The maximum value of n lt 101 such that 1+sum_(k=1)^(n)i^(k)=0 is

    A
    `96`
    B
    `97`
    C
    `99`
    D
    `100`
  • Similar Questions

    Explore conceptually related problems

    The unit vector perpendicular to the vectors hat(i) -hat(j) + hat(k), 2hat(i) + 3hat(j) -hat(k) is

    Find the value of lambda , if the point with position vectors 3hat(i) - 2hat(j) - hat(k), 2hat(i) + 3hat(j) - 4hat(k), -hat(i) + hat(j) + 2hat(k) and 4hat(i) + 5hat(j) + lambda hat(k) are coplanar.

    The vector 1/3 (2i-2j+k) is

    The value of p such that the vectors 2i-j+k, i+2j-3k and 3i-pj+5k are coplanar is

    The value of p such that the vectors hat(i) + 3hat(j) - 2hat(k), 2hat(i) - hat(j) + 4hat(k) and 3hat(i) + 2hat(j) + p hat(k) are coplanar is