Home
Class 12
MATHS
If t(n)=(1)/(4)(n+2)(n+3) , n=1,2,3,...

If` t_(n)=(1)/(4)(n+2)(n+3) , n=1,2,3, .. `then `(1)/(t_(1))+(1)/(t_(2))+(1)/(t_(3))+..+(1)/(t_(2003))=`

A

`(4006)/(3006)`

B

`(4003)/(3007)`

C

`(4006)/(3008)`

D

`(4006)/(3009)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int (1+t^(2))/(1+t^(4))dt =

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

If t_(1), t_(2) and t_(3) are distinct, then the points: (t_(1), 2at_(1), at_(1)^(3)), (t_(2), 2at_(2)+at_(2)^(3)) and (t_(3), 2at_(3)+at_(3)^(3)) are colinear if :

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

For a positive integer n, let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+ . . .+(1)/(2^(n)-1) Then:

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

Let A = int_0^(1) e^(t)/(t+1) dt , then int_0^(1) (t.e^(t^(2)))/(t^(2)+1) dt =