Home
Class 12
MATHS
If log(3) 2, log(3) ( 2^(x) - 5) and log...

If `log_(3) 2, log_(3) ( 2^(x) - 5)` and `log_(3) ( 2^(x) - ( 7)/( 2))` are in A.P., then x is equal to `:`

A

2

B

3

C

4

D

`2,3`

Text Solution

Verified by Experts

The correct Answer is:
B

`:. log_(3)2,log_(3)(2^(x)-5)` and `log_(3)(2^(x)-(7)/(2))" are in AP. " " " "……..(i)"`
For defined, `2^(x)-5gt0` and `2^(x)-(7)/(2)gt0`
`:. 2^(x)gt5 " " "…(ii)"`
From Eq.(i),`2,2^(x)-5,2^(x)-(7)/(2)` are in GP. `:." " (2^(x)-5)^(2)=2*(2^(x)-(7)/(2))`
`implies 2^(2x)-12*2^(x)+32=0`
`implies (2^(x)-8)(2^(x)-4)=0`
`:." " 2^(x)=8,4`
`implies 2^(x)=8=2^(3),2^((x) ne4 " " [" from Eq. (ii) "]`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If log 2, log ( 2^(x) - 1) and log ( 2^(x) + 3) are in A.P., then 2, 2^(x) -1 , 2^(x) + 3 are in :

If log_(x)a,a^(x//2) and log_(b)x are in G.P., then x equals :

If 1,(1)/(2) log_(3)(3^(1-x)+2),log_(3)(4.3^(x)-1) are in A.P., then x equals :

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

If ln ( a+c ) , ln ( c-a) , ln(a-2b+c) are in A.P., then :

log_(3)2,log_(6)2,log_(12)2 are in :

If log_(2) (9^(x - 1) + 7) - log_(2) (3^(x-1) + 1) = 2 , then values of x are

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If x^((log_2 x)^(2)-6 log_2 x+11)=64 then x is equal to