Home
Class 12
MATHS
If n is an odd integer greater than or e...

If n is an odd integer greater than or equal to 1, then the value of `:`
`n^(3) - ( n - 1)^(3) + ( n -2)^(3) - "........." + ( - 1)^(n-1) . 1^(3)` is `:`

A

`((n+1)^(2)(2n-1))/(4)`

B

`((n-1)^(2)(2n-1))/(4)`

C

`((n+1)^(2)(2n+1))/(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Given that n is an odd integer greater than or equal to 1.
`S_(n)=n^(3)-(n-1)^(3)+(n-2)^(3)-"..."+(-1)^(n-1)1^(3)`
`=1^(3)-2^(3)+"...."+(n-2)^(3)-(n-1)^(3)+n^(3)`
[`:.` n is odd integer , so (n-1) is even integer]
`=(1^(3)-2^(3)+"...."+n^(3))-2*2^(3)(1^(3)-2^(3)+"...."+(n-1)/(2) " terms ")`
`=[(n(n+1))/(2)]^(2)-16*[((n-1)/(2)((n-1)/(2)+1))/(2)]^(2)`
`=(n^(2)(n+1)^(2))/(4)-(4(n-1)^(2)(n+1)^(2))/(16)=((n+1)^(2))/(4)[n^(3)-(n-1)^(2)]`
`=(n-1)^(2)/(4)*(2n-1)(1)=((2n-1)(n+1)^(2))/(4)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

For any odd integer n ge1 , n^(3) - ( n - 1)^(3) + "….." + ( -1)^(n-1)1^(3) equals :

If n is an odd integer, then (1+i)^(6 n)+(1-i)^(6 n) is equal to

The sum of : (x+ 2)^(n-1) + ( x+2) ^(n-2) (x+1) + ( x+2)^(n-3) (x+1)^(2) + "......." + ( x+ 1)^(n-1) equals :

For a positive integer n, let a_(n) = 1+( 1)/( 2) +( 1)/( 3) + ( 1)/( 4) + "......." + ( 1)/(( 2^(n) - 1)) . Then :

1^(2) + 1+ 2^(2) + 2 + 3^(2) + 3+"............"+n^(2) + n is equal to :

Let n be an odd natural number of greater than 1. then the number of zeros at the end of the sum 999^(n)+1 is:

If 1+2 + 3+…..n terms = 28 , then n is equal to

IF 1+2+3+………..+n=78, then the value of n is:

The value of ""2^n[1.3.5 ..........(2n-3)(2n-1)] is