Home
Class 12
MATHS
If a(1) , a(2) , a(3),"………."a(n) are in ...

If `a_(1) , a_(2) , a_(3),"………."a_(n)` are in H.P. , then `a_(1), a_(2) + a_(2) a_(3) + "………" + a_(n-1)a_(n)` will be equal to `:`

A

`2a_(1)a_(5)`

B

`3a_(1)a_(5)`

C

`4a_(1)a_(5)`

D

`6a_(1)a_(5)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given that ` a_(1),a_(2),a_(3),a_(4),a_(5)` are in HP.
`:. (1)/(a_(1)),(1)/(a_(2)),(1)/(a_(3)),(1)/(a_(4)),(1)/(a_(5))` are in AP.
`implies (1)/(a_(2))-(1)/(a_(1))=(1)/(a_(3))-(1)/(a_(2))=(1)/(a_(4))-(1)/(a_(3))=(1)/(a_(5))-(1)/(a_(4))=d" " ["say "]`
`:. a_(1)-a_(2)=a_(1)a_(2)d " " implies a_(2)-a_(3)=a_(2)a_(3)d`
` a_(3)-a_(4)=a_(3)a_(4)d " " implies a_(4)-a_(5)=a_(4)a_(5)d`
On adding all, we get
`a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5)=(a_(1)-a_(5))/(d)=a_(1)a_(5)(((1)/(a_(5))-(1)/(a_(1)))/(d))=4a_(1)a_(5)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1) , a_(2), "……………" a_(n) are in H.P., then the expression a_(1) a_(2) + a_(2) a_(3)+"…….."+ a_(n-1) a_(n) is equal to :

If a_(1),a_(2) , a_(3),"……..",a_(n) are in H.P. , then : (a_(1))/( a_(2) + a_(3) +"........."+a_(n)),(a_(2))/(a_(1) + a_(3)+"..........."+a_(n)),"......",(a_(n))/(a_(1)+a_(2)+"........"a_(n-1)) are in :

If a_(r ) gt 0, r in N and a_(1), a_(2) , a_(3) ,"……..",a_(2n) are in A.P. then : (a_(1) + a_(2n))/( sqrt( a_(1))+ sqrt(a_(2))) + ( a_(2) + a_(2n-1))/(sqrt(a_(2)) + sqrt(a_(3)))+"......"(a_(n)+a_(n+1))/(sqrt(a_(n))+sqrt(a_(n+1))) is equal to :

8,A_(1),A_(2),A_(3),24.

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

If a_(1) , a_(2) , a_(3),"…………."a_(n) are in A.P., where a_(i) gt 0 for all i, then the value of : (1) /( sqrt(a_(1))+sqrt(a_(2)))+ (1) /( sqrt(a_(2))+sqrt(a_(3)))+"......"+(1) /( sqrt(a_(n-1))+sqrt(a_(n))) is :

If a_(1)a_(2)a_(3)…….a_(9) are in A.P. then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is

If 1, a_(1), a_(2). ..., a_(n-1) are n roots of unity, then the value of (1 - a_(1)) (1 - a_(2)) .... (1 - a_(n-1)) is :

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

If a_(1) , a_(2),"………",a_(n) are n non-zero real numbers such that ( a_(1)^(2) +a_(2)^(2) + "........."+a_(n-1)^(2) ) ( a_(2)^(2) + a_(3)^(2) + "........"+a_(n)^(2))le(a_(1) a_(2) + a_(2) a_(3) +".........." +a_(n-1) a_(n))^(2), a_(1), a_(2),".........",a_(n) are in :