Home
Class 12
MATHS
The minimum value of ((a^2 +3a+1)(b^2+3b...

The minimum value of `((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc)`The minimum value of , where `a, b, c in R^+` is

A

`(11^(3))/(2^(3))`

B

125

C

25

D

27

Text Solution

Verified by Experts

The correct Answer is:
B

Let `A=((a^(2)+3a+1)(b^(2)+3b+1)(c^(2)+3c+1))/(abc)`
`=((a^(2)+3a+1)/(a))((b^(2)+3b+1)/(b))((c^(2)+3c+1)/(c))`
`=(a+3+(1)/(a))(b+3+(1)/(b))(c+3+(1)/(c))`
where `a,b,c in R^(+)`.
Applying `Am ge GM` on a and `(1)/(a)`
`a+(1)/(a)ge 2 " " implies a+(1)/(b)+3ge 5`
Similarly, `b+(1)/(b)ge 2 " " implies b+(1)/(b)+3ge 5`
and `c+(1)/(c)ge 2 " " implies c+(1)/(c)+3ge 5`
`:.(a+(1)/(a)+3)(b+(1)/(b)+3)(c+(1)/(c)+3)ge 125`
So, `Age 5*5*5 " " implies Age 125`
minimum value of A is 125.
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the expression 3x+ 3^(1-x) , x in R , is :

If ab = 2a + 3b, a gt 0, b gt 0 , then the minimum value of ab is

If the maximum and minimum values of y=(x^2-3x+c)/(x^2+3x+c) are 7 and 1/7 respectively then the value of c is equal to

The value of [vec a - vec b, vec b - vec c , vec c - vec a] where |vec a| = 1, |vec b| =5, |vec c| =3 is

If three positive real numbers a,b,c are in A.P. such that abc=4, then the minimum value of b is

y=3x is tangent to the parabola 2y=ax^2+b . The minimum value of a+b is

The value of C_(1)+4C_(2)+7C_(3)+ . . .+(3n-2)C_(n) is

Statement 1 a+b+c=18(a,b,cgt0) , then the maximum value of abc is 216. Statement 2 Maximum value occurs when a=b=c .

If the value of C_(0) + 2C_(1) + 3C_(2) + ……. + (n+1) C_(n) =576 then n is :

The value of C_(0)+3C_(1)+5C_(2)+7C_(3)+ . . .+(2n+1)C_(n) is: