Home
Class 12
MATHS
For a positive integer n, let a(n)=1+(...

For a positive integer n,
let `a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+ . . .+(1)/(2^(n)-1)` Then:

A

`a(100)lt100`

B

`a(100)gt100`

C

`a(200)gt100`

D

`a(200)lt100`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`:.a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)"......"+(1)/(2^(n)-1)`
`=1+((1)/(2)+(1)/(3))+((1)/(4)+(1)/(5)+(1)/(6)+(1)/(7))+((1)/(8)+"......"+(1)/(15))+"......"+(1)/(2^(n)-1)`
`=1+((1)/(2)+(1)/(2^(2)-1))+((1)/2^(2)+(1)/(5)+(1)/(6)+(1)/(2^(3)-1))+"......"+(1)/(2^(n)-1)`
`:. a(n)lt1+1+"....."+` n terms
`implies a(n)ltn`
`implies a(100)lt100`
Also, `a(n)=1+(1)/(2)+((1)/(3)+(1)/(4))+((1)/(5)+(1)/(6)+(1)/(7)+(1)/(8))+"......"+(1)/(2^(n)-1)`
`=1+(1)/(2)+((1)/(2^(1)+1)+(1)/(2^(2)))+((1)/(2^(2)+1)+(1)/(6)+(1)/(7)+(1)/(2^(3)))+"......"+((1)/(2^(n-1)+1)+"......"+(1)/(2^(n)))-(1)/(2^(n))`
`a(n)gt1+(1)/(2)+(2)/(4)+(4)/(8)+"......."+(2^(n-1))/(2^(n))-(1)/(2^(n))`
`a(n)gt(1-(1)/(2^(n)))+(n)/(2)" " implies a(n)gt(n)/(2)`
`:.a(200)gt100`
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer, then (1+i)^(n)+(1-i)^(n)=

For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

Find the least positive integer 'n' such that ((1+i)/(1-i))^(n) =1 .

Let a sequence {a_(n)} be defined by a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n) . Then:

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

If n is a positive integer, then: (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is:

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

For any odd integer n ge1 , n^(3) - ( n - 1)^(3) + "….." + ( -1)^(n-1)1^(3) equals :