Home
Class 12
MATHS
For 0ltphilepi//2, if : x=underset(n=0...

For `0ltphilepi//2`, if :
`x=underset(n=0)overset(oo)sumcos^(2n)phi,y=underset(n=0)overset(oo)sumsin^(2n)phi`,
`z=underset(n=0)overset(oo)sumcos^(2n)sin^(2n)phi`, then :

A

`xyz=xz+y`

B

`xyz=xy+z`

C

`xyz=x+y+z`

D

`xyz=yz+x`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:. 0ltphilt(pi)/(2)`
`:.0sinphi lt1` and `0ltcosphilt1`
`:.x=sum_(n=0)^(oo)cos^(2n) phi=1+cos^(2)phi+cos^(4)phi+"....."+oo`
`=(1)/(1-cos^(2)phi)=(1)/(sin^(2)phi)`
or `sin^(2)phi=(1)/(x)" " "…..(i)"`
and `y=sum_(n=0)^(oo)sin^(2n) phi=1+sin^(2)phi+sin^(4)phi+"....."+oo`
`=(1)/(1-sin^(2)phi)=(1)/(cos^(2)phi)`
or `cos^(2)phi=(1)/(y)" " ".....(ii)"`
From Eqs. (i) and (ii),
`sin^(2)phi+cos^(2)phi=(1)/(x)+(1)/(y)`
`1=(1)/(x)+(1)/(y)`
`:.xy=x+y" " "..........(iii)"`
and `z=sum_(n=0)^(oo)cos^(2n) phisin^(2)phi`
`=1+cos^(2)phisin^(2)phi+cos^(4)phisin^(4)phi+"......."`
`(1)/(1-sin^(2)phicos^(2)phi)=(1)/(1-(1)/(xy))[" from Eqs. (i)and (ii) "]`
`implies z=(xy)/(xy-1)`
`implies xyz=+xy`
and `xyz=z+x+y" " ["from Eq.(iii) "]`
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(0)overset(a)int sqrt(a^(2) - x^(2)) dx =

underset(0)overset(pi)intxf(sin x)dx=A underset(0)overset(pi//2)int f(sin x) dx then A is

For 0 lt theta lt ( pi )/(2) , if x = sum_(n=0)^(oo)cos^(2n) theta, y = sum_(n=0)^(oo) sin^(2n) theta ,z=sum_(n=0)^(oo)cos^(2n) theta sin^(2n) theta ,then :

overset(n//8)underset(0)intcos^(3)4thetadtheta =

In the reaction , CH_(3)-underset(CH_(3))underset(|)(C)=Ounderset(-H_(2)O)overset(NH_(2)NH_(2))toXunderset("glycol")overset(KOH)toY+N_(2) Y is

overset(n//2)underset(0)int(cosx-sinx)/(1+cosxsinx)dx

underset(n to oo)lim""underset(k=1)overset(n)sum(k^(1//a){n^(a-(1)/(a))+K^(a-(1)/(a))})/(n^(a+1)) =

Monomer of [-underset(CH_3)underset(|)overset(CH_3)overset(|)C-CH_2-]_n is