Home
Class 12
MATHS
If the sum to n terms of the series (1)/...

If the sum to n terms of the series `(1)/(1*3*5*7)+(1)/(3*5*7*9)+(1)/(5*7*9*11)+"......"` is `(1)/(90)-(lambda)/(f(n))`, then find `f(0), f(1)` and `f(lambda)`

A

`f(0)=15`

B

`f(1)=105`

C

`f(lambda)=(640)/(27)`

D

`lambda=(1)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`T_(n)=(1)/((2n-1)(2n+1)(2n+3)(2n+5))`
`:.S_(n)=sum_(n=1)^(n)T_(n)a`
`S_(n)=(1)/(6)sum_(n=1)^(n)((2n+5)-(2n-1))/((2n-1)(2n+1)(2n+3)(2n+5))`
`=(1)/(6)sum_(n=1)^(n)((1)/((2n-1)(2n+1)(2n+3))-(1)/((2n+1)(2n+3)(2n+5)))`
`=(1)/(6)((1)/(1*3*5)-(1)/((2n+1)(2n+3)(2n+5)))`
`=(1)/(90)-((1)/(6))/((2n+1)(2n+3)(2n+5))`
`:.lambda=(1)/(6)`
and `f(n)=(2n+1)(2n+3)(2n+5)`
`:.f(0)=15`
`f(1)=105`
and `f(lambda)=f"((1)/(6))((1)/(3)+1)((1)/(3)+3)((1)/(3)+5)=(640)/(27)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum to n terms of the series 1+3+7+13+.. .=

Find the sum to n terms of the series (1)/(1*3*5*7*9)+(1)/(3*5*7*9*11)+(1)/(5*7*9*11*13)+"......" . Also, find the sum to infinty terms.

Sum to n terms of the series (1)/(2 . 5) +(1)/(5 . 8)+(1)/(8 . 11)+..=

The sum of n terms of the series 1+(1+3)+(1+3+5)+.. .. .. is

Sum to n terms the series 1+3+7+15+31+...

Sum to n terms the series 1+3+7+15+31+...

Find the sum of n terms of the series 1+4/5+7/(5^2)+10/(5^3)+dot

The sum of n terms of the series : (1)/( 1.2.3.4) + ( 1)/( 2.3.4.5) + ( 1) / ( 3.4.5.6.)+"......." is :

Find the sum of n terms of the series 1. 2. 3+2. 3. 4+3. 4. 5+

The sum of n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+ (7)/(1^(2)+2^(2)+3^(2))+.. .. .. is