Home
Class 12
MATHS
For the series, S=1+1/((1+3))(1+2)^2+1/(...

For the series, `S=1+1/((1+3))(1+2)^2+1/((1+3+5))(1+2+3)^2+1/((1+3+5+7))(1+2+3+4)^2` +...

A

7th term is 16

B

7th term is 18

C

sum of first 10 terms is `(505)/(4)`

D

sum of first 10 terms is `(405)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`:.S=1+(1)/(1+3)(1+2)^(2)+(1)/(1+3+5)(1+2+3)^(2)+"......."`
`T_(n)=(1)/(1+3+5+7+"........"" n terms ")*(1+2+3+"......."" n terms " )^(2)`
`=(1)/([(n)/(2)[2*1+(n-1)*2]])*((n(n+1))/(2))^(2)=((n+1)^(2))/(4)`
(a) `T_(7)=((7+1)^(2))/(4)=(64)/(4)=16`
(b) `S_(10)sum_(n=1)^(10)((n+1)/(2))^(2)=(1)/(4)sum_(n=1)^(10)(n^(2)+2n+1)`
`=(1)/(4)(sum_(n=1)^(10)n^(2)+2sum_(n=1)^(10)n+sum_(n=1)^(10)1)`
`=(1)/(4)((10xx11xx21)/(6)+(2xx10xx11)/(2)+10)`
`=(1)/(4)(385+110+10)=(505)/(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2))/(1 + 2) + (1^(2) + 2^(2) + 3^(2))/(1 + 2 + 3) + ..

The sum of first 9 terms of the series : ( 1^(3))/( 1) + ( 1^(3) + 2^(3))/( 1+ 3) + ( 1^(3) + 2^(3) + 3^(3))/( 1+ 3+ 5)+"........." is :

The sum of n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+ (7)/(1^(2)+2^(2)+3^(2))+.. .. .. is

The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........" is

The sum of n terms of the series : (1)/( 1.2.3.4) + ( 1)/( 2.3.4.5) + ( 1) / ( 3.4.5.6.)+"......." is :

If the sum of the first ten terms of the series (1 3/5)^2+(2 2/5)^2+(3 1/5)^2+4^2+(4 4/5)^2+. . . . . , is (16)/5 m, then m is equal to: (1) 102 (2) 101 (3) 100 (4) 99

The sum of first 9 terms of the series : 1^3/1+(1^3+2^3)/(1+3)+(1^3+2^3+3^3)/(1+3+5)+.... is :

Find the sum to n terms of the series 1/(1+1^(2)+1^(4))+2/(1+2^(2)+2^(4))+3/(1+3^(2)+3^(4))+… .

Find the sum to n terms of the series , (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.... ?