Home
Class 12
MATHS
Let a sequence{a(n)} be defined by a(n)=...

Let a sequence`{a_(n)}` be defined by `a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"...."+(1)/(3n)`. Then:

A

(a) `a_(2)=(11)/(12)`

B

(b) `a_(2)=(19)/(20)`

C

(c) `a_(n+1)-a_(n)=((9n+5))/((3n+1)(3n+2)(3n+3))`

D

(d) `a_(n+1)-a_(n)=(-2)/(3(n+1))`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`:.a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(3n)`
`a_(n)=(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+"....."(1)/(n+2n)`
`a_(n)=sum_(alpha=1)^(2n)(1)/(n+alpha)`
`a_(2)=sum_(alpha=1)^(4)(1)/(2+alpha)=(1)/(3)+(1)/(4)+(1)/(5)+(1)/(6)=(20+15+12+10)/(60)`
`=(57)/(60)=(19)/(20)`
Now, `a_(n+1)-a_(n)=((1)/(n+2)+(1)/(n+3)+"......."+(1)/(3n+3))-((1)/(n+1)+(1)/(n+2)+"......+(1)/(3n))`
`=(1)/(3n+1)+(1)/(3n+2)+(1)/(3n+3)-(1)/(n+1)`
`=(1)/(3n+1)+(1)/(3n+2)-(2)/(3(n+1))`
`=(9n^(2)+15n+6+9n^(2)+12n+3-18n^(2)-18n-4)/((3n+1)+(3n+2)+(3n+3))`
`=(9n+5)/((3n+1)+(3n+2)+(3n+3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n, let a_(n) = 1+( 1)/( 2) +( 1)/( 3) + ( 1)/( 4) + "......." + ( 1)/(( 2^(n) - 1)) . Then :

For a positive integer n, let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+ . . .+(1)/(2^(n)-1) Then:

Show that the sequence t_(n) defined by t_(n)=2*3^(n)+1 is not a GP.

What is the 20^("th") term of the sequence defined by a_n=(n-1) (2-n) (3+n) ?

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

Let the sequence a_n be defined as follows: a_1 = 1, a_n = a_(n - 1) + 2 for n ge 2 . Find first five terms and write corresponding series

If n^(th) term of the sequences is a_(n)= (-1)^(n-1)5^(n+1) , Find a_(3) ?

Let f:NtoN defined by : f(n)={:{((n+1)/(2) "if n is odd"),((n)/(2) "if n is even"):}