Home
Class 12
MATHS
If n is a positive integer satisfying th...

If n is a positive integer satisfying the equation `2+(6*2^(2)-4*2)+(6*3^(2)-4*3)+"......."+(6*n^(2)-4*n)=140` then the value of n is

Text Solution

Verified by Experts

`:.2+(6*2^(2)-4*2)+(6*3^(2)-4*3)+"......."+(6*n^(2)-4*n)=140`
`2+6(2^(2)+3^(2)+"......."+n^(2))-4*(2+3+"....."+n)=140`
`implies 2+6((n(n+1)(2n-1))/(6)-1)-4((n(n+1))/(2)-1)=140`
`implies 2+n(n+1)(2n+1)-6-2n(n+1)+4=140`
`implies n(n+1)(2n+1)-2n(n+1)-140=0`
`implies 2n^(3)3n^(2)+n-2n^(2)-2n-140=0`
`implies 2n^(3)+n^(2)-n-140=0`
`implies (n-4)+(2n^(2)+9n+35)=0`
`implies n=4 " or " 2n^(2)+9n+35=0`
`implies 2n^(2)+9n+35=0`
`implies n=(-9pmsqrt(81-280))/(4)`
`:. n=(9pmsqrt(-199))/(4) " " [" complex values "]`
Only positive integer value of n is 4.
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer, then n^(3)+2n is divisible

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

If n is a positive integer, then: (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is:

If a_n=sin((npi)/6) then the value of sum a_n^2

The number of positive integers satisfying the inequality C(n+1,n-2) - C(n+1,n-1)<=100 is

The number of positive integers satisfying the inequality : ""^(n+1)C_(n-2)-""^(n+1)C_(n-1)le100 is :

If ""^(n) P_(4)=20(""^(n)P_(2)) then find the value of n.

If n is odd then the sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)-.. .. .. .. is

For a positive integer n, let a_(n) = 1+( 1)/( 2) +( 1)/( 3) + ( 1)/( 4) + "......." + ( 1)/(( 2^(n) - 1)) . Then :

The positive integer value of n >3 satisfying the equation 1/(sin(pi/n))=1/(sin((2pi)/n))+1/(sin((3pi)/n))i s