Home
Class 12
MATHS
Let S(x)=1+x-x^(2)-x^(3)+x^(4)+x^(5)-x^(...

Let `S(x)=1+x-x^(2)-x^(3)+x^(4)+x^(5)-x^(6)-x^(7)+"........+"oo`, where `0ltxlt1`. If `S(x)=(sqrt(2)+1)/(2)`, then the value of `(x+1)^(2)` is

Text Solution

Verified by Experts

`S(x)=1+x-x^(2)-x^(3)+x^(4)+x^(5)-x^(6)-x^(7)+"....."+oo`
where `x in(0,1)`
`S(x)=(1+x)-x^(2)(1+x)+x^(4)+(1+x)-x^(6)(1+x)+"....."+oo`
`impliesS(x)=(1+x)[1-x^(2)+x^(4)-x^(6)+"....."+oo]`
`impliesS(x)=(1+x)((1)/(1+x^(2)))" " [:.S_(oo)=(a)/(1-r) " for "GP]`
According to the question, `S(x)=(sqrt(2)+1)/(2)`
So, `(1+x)/(1+x^(2))=(sqrt(2)+1)/(2)`
`implies=2+2x=(sqrt(2)+1)x^(2)+sqrt(2)+1`
`implies(sqrt(2)+1)x^(2)-2x-2+sqrt(2)+1=0`
`implies(sqrt(2)+1)x^(2)-2x+sqrt(2)-1=0`
`implies(sqrt(2)+1)x^(2)-2x+(1)/(sqrt(2)+1)=0`
`implies[(sqrt(2)+1)x]^(2)-2(sqrt(2)+1)x+1=0`
`implies[(sqrt(2)+1)x-1]^(2)=0`
`implies x=(1)/(sqrt(2)+1)" " ["repeated "]`
So, ` x=sqrt(2)-1`
`:. (x+1)^(2)=2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) , then :

If x=7+4sqrt3 then find the value of x+(1)/(x)

If 2x=-1+sqrt(3)i , then the value of (1-x^(2)+x)^(6)-(1-x+x^(2))^(6)=

If 2 x =-1 + I sqrt(3) then the value of (1-x^(2) +x)^(6) - (1-x+x^(2))^(6)=

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

IF {:|(2x,x+3),(2(x+1),x+1)|={:|(1,5),(3,3)| write the value of x.

If |A| = 2 and A = [ (2x, 6) , (5x, 1)] then find the value of x

If sin^(-1) ((2a)/(1+a^2))+cos^(-1) ((1-a^2)/(1+a^2))=tan^(-1) ((2x)/(1-x^2)) , where a, x in (0,1), then the value of x is :

The value of lim_(x rarr 0) (sqrt((1)/(2) (1-cos 2x)))/(x) is :