Home
Class 12
MATHS
If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca),...

If `4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca)`, where a,b,c are non-zero real numbers, then a,b,c are in GP.
Statement 2 If `(a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0`, then `a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) in R`.

A

Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1

B

Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1

C

Statement 1 is true, Statement 2 is false

D

Statement 1 is false, Statement 2 is true

Text Solution

Verified by Experts

The correct Answer is:
D

Statement 1 `4a^(2)+9b^(2)+16c^(2)-2(3ab+6bc+4ca)=0`
`implies (2a)^(2)+(3b)^(2)+(4c)^(2)-(2a)(3b)-(3b)(4c)-(2a)(4c)=0`
`implies (1)/(2){(2a-3b)^(2)+(3b-4c)^(2)+(4c-2a)^(2)}=0`
`implies 2a-3b=0" and "3b-4c=0" and "4c-2a=0`
`implies" and " b=(4c)/(3)" and " c=(a)/(2) implies a=(3b)/(2)" and " b=(4c)/(3)" and " c=(3b)/(4)`
Then,a,b,c are of the form `(3b)/(2),b,(3b)/(4)`, which are in HP.
So, Statement 1 is false.
Statement 2 If `(a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0`
`implies a_(1)-a_(2)=0" and "a_(2)-a_(3)=0" and a_(3)-a_(1)=0`
`implies a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) inR`
So, Statement 2 istrue.
Promotional Banner

Similar Questions

Explore conceptually related problems

8,A_(1),A_(2),A_(3),24.

If (1+x-2 x^(2))^(6)=1+a_(1) x+a_(z) x^(2)+l .. .+a_(12) x^(12) then a_(2)+a_(4)+..+a_(12) =

If (1+x+x^(2))^(n) = sum_(r=0)^(2 n) a_(r). x^(r) then a_(1)-2 a_(2)+3 a_(3)-..-2 n. a_(2n) =

If ( a_(2)a_(3))/( a_(1) a_(4)) = ( a_(2) + a_(3))/( a_(1) + a_(4) ) = 3 ((a_(2) - a_(3))/(a_(1) - a_(4))) , then : a_(1) , a_(2) , a_(3) , a_(4) are in :

If a_(1), a_(2) ,a_(3)"….." is an A.P. such that : a_(1) + a_(5) + a_(10)+a_(15)+a_(20)+a_(24)=225 , then a_(1) + a_(2)+a_(3) +"….." a_(23) + a_(24) is :

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

If a_(1)a_(2)a_(3)…….a_(9) are in A.P. then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is

If (1+x+x^(2))^(n) = a_(0)+a_(1) x+a_(2) x^(2)+..+a_(2 n) x^(2 n) then the value of a_(1)+a_(4)+a_(7)+.. . . is

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(x)x^(2)+ . . . .+a_(n) x^(n) and a_(n-3),a_(n-2),a_(n-2),a_(n-1) are in A.P. then:

If A=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|andB=|{:(c_(1),c_(2),c_(3)),(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)):}| then