Home
Class 12
MATHS
Find value of (x+(1)/(x))^(3)+(x^(2)+(1)...

Find value of `(x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3)`.

Text Solution

Verified by Experts

`(x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3)=sum_(n=1)^(n)(x^(n)+(1)/(x^(n)))^(3)`
`=sum_(n=1)^(n)(x^(3n)+(1)/(x^(3n))+3(x^(n)+(1)/(x^(n))))`
`=sum_(n=1)^(n)x^(3n)+sum_(n=1)^(n)(1)/(x^(3n))+3sum_(n=1)^(n)x^(n)+3sum_(n=1)^(n)(1)/(x^(n))`
`=(x^(3)(1-x^(3n)))/((1-x^(3)))+((1-x^(3n)))/(x^(3n)(1-x^(3)))+(3x(1-x^(n)))/((1-x))+(3(1-x^(n)))/(x^(n)(1-x))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n)(2r-1)=x then lim_(n to oo) [(1^(3))/(x^(2))+(2^(3))/(x^(2))+(3^(3))/(x^(2))+ .......+(n^(3))/(x^(2))] =

Find the derivative of (2)/(x+1)-(x^(2))/(3x-1)

Evaluate : lim_(x to 1) (x^(3) - x^(2) + 1) .

Evaluate : int(x^(3)+x+1)/(x^(2)-1)dx .

The sum of : (x+ 2)^(n-1) + ( x+2) ^(n-2) (x+1) + ( x+2)^(n-3) (x+1)^(2) + "......." + ( x+ 1)^(n-1) equals :

The value of lim_(x rarr 1) (tan^(2)(x-1))/(x^(3)-x^(2)-x+1) =

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)