Home
Class 12
MATHS
If three unequel numbers are in HP and t...

If three unequel numbers are in HP and their squares are in AP, show that they are in the ratio `1+sqrt(3):-2:1-sqrt(3) " or " 1-sqrt(3):-2:1+sqrt(3)`.

Text Solution

Verified by Experts

Let a,b,c (unequal number) are in HP.
`:. b =(2ac)/(a+c)`
`implies (b)/(2)=(ac)/(a+c)=lambda " " [" say "]`
`implies b =2lambda" and " ac=lambda (a+c)" " "……..(i)"`
Now, `a^(2)b^(2)c^(2)` are in AP
So, `b^(2)=(a^(2)c^(2))/(2) implies 2b^(2)=a^(2)+c^(2)`
`implies 2(2lambda)^(2)=(a+c)^(2)-2ac`
`implies =(a+c)^(2)-2lambda(a+c)-8lambda^(2)=0`
`implies =(a+c-4lambda)(a+c+2lambda)=0`
`implies a+c=4lambda" or " a+c=-2lambda`
Case I If `a+c=4lambda`
`:. ac=4lambda^(2)" " [" fromEq.(i) "]`
`implies (a-c)^(2)=(a+c)^(2)-4ac`
`implies (a-c)^(2)=16lambda^(2)-16lambda^(2)`
`implies (a-c)^(2)=0 implies a=c`
Let given that a,b,c are distinct, so `a+c=4lambda` is not valid.
Case II If `a+c=-2lambda`
`implies ac=-2lambda^(2)" " [" fromEq. (i) "]`
`:.(a-c)^(2)=(a+c)^(2)-4ac`
`implies (a-c)^(2)=4lambda^(2)+8lambda^(2) implies (a-c)=pm2sqrt(3lambda)" " ".......(ii)"`
If `a-c=2sqrt(3lambda)" " ".......(iii)'`
then `a+c=2lambda`
From Eqs. (ii) and (iii), we get
`a=(sqrt(3-1))lambda " and "c=-(1+sqrt(3))lambda)`
`:.a:b:c=(sqrt(3-1))lambda:2lambda:-(sqrt(3)+1)lambda`
`a:b:c=(sqrt(3-1)):2:-(sqrt(3)+1)`
`impliesa:b:c=(1-sqrt(3)):-2:(sqrt(3)+1)`
If `a-c=-2sqrt(3lambda)" " "........(iv)"`
then `a+c=-2lambda " " ".......(v)"`
From Eqs. (iv) and (v), we get
`a=-(sqrt(3)+1)lambda" and " c=(sqrt(3)-1)lambda`
`:.a:b:c=-(sqrt(3)+1)lambda:2lambda:(sqrt(3)-1)lambda`
`impliesa:b:c=(1+sqrt(3)):-2:(1-sqrt(3))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio (3+2sqrt2):(3-2sqrt2)

The amplitude of (1+i sqrt(3))/(sqrt(3)+i)

Greatest term in the expansion of sqrt(3)(1+(1)/(sqrt(3)))^(20) is

The argument of (1-i sqrt(3))/(1+i sqrt(3))=

The anmplitude of (1 + sqrt(3)i)/(sqrt(3) + i) is

The amplitude of (1+sqrt(3i))/(sqrt(3)+i) is

The value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6)=

What are the roots of the quadratic equation x^(2)+(sqrt(3)+1)+sqrt(3)=0 ?

Solve : y^(2)-(sqrt(3)+1)y+sqrt(3)=0