Home
Class 12
MATHS
Ifa(1),a(2),a(3),"........",a(n) are in ...

If`a_(1),a_(2),a_(3),"........",a_(n)` are in AP with `a_(1)=0`, prove that `(a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1))`.

Text Solution

Verified by Experts

`a_(1),a_(2),a_(3),"........",a_(n)` are in AP with `a_(1)=0` and common difference d
`:.a_(2)=d,a_(3)=2d,"......",a_(n)=(n-1)d" " [dne 0]`
`LHS=(a_(3))/(a_(2))+(a_(4))/(a_(3))+(a_(5))/(a_(4))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))`
`=(1)/(a_(2))(a_(3)-a_(2))+(1)/(a_(3))(a_(4)-a_(2))+"......"+((a_(n-1)-a_(2)))/(a_(n-2))+(a_(n))/(a_(n-1))`
`=(1)/(d)(2d-d)+(1)/(2d)(3d-d)+"...."+([(n-2)d-d])/((n-3)d)+((n-1)d)/((n-2)d)`
`=[1+1+"......."+(n-3)" times "]+(n-1)/(n-2)`
`=[1+1+"......."+(n-3)" times "]+(n-1)/(n-2)`
`=(n-3)+1+(1)/(n-2)=n-2+(1)/(n-2)`
`=(a(n-2)d)/(d)+(d)/((n-2)d)=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1))RHS`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

8,A_(1),A_(2),A_(3),24.

If a_(1),a_(2) , a_(3),"……..",a_(n) are in H.P. , then : (a_(1))/( a_(2) + a_(3) +"........."+a_(n)),(a_(2))/(a_(1) + a_(3)+"..........."+a_(n)),"......",(a_(n))/(a_(1)+a_(2)+"........"a_(n-1)) are in :

If a_(r ) gt 0, r in N and a_(1), a_(2) , a_(3) ,"……..",a_(2n) are in A.P. then : (a_(1) + a_(2n))/( sqrt( a_(1))+ sqrt(a_(2))) + ( a_(2) + a_(2n-1))/(sqrt(a_(2)) + sqrt(a_(3)))+"......"(a_(n)+a_(n+1))/(sqrt(a_(n))+sqrt(a_(n+1))) is equal to :

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

If a_(1) , a_(2) , a_(3),"………."a_(n) are in H.P. , then a_(1), a_(2) + a_(2) a_(3) + "………" + a_(n-1)a_(n) will be equal to :

If a_(1) , a_(2),"………",a_(n) are n non-zero real numbers such that ( a_(1)^(2) +a_(2)^(2) + "........."+a_(n-1)^(2) ) ( a_(2)^(2) + a_(3)^(2) + "........"+a_(n)^(2))le(a_(1) a_(2) + a_(2) a_(3) +".........." +a_(n-1) a_(n))^(2), a_(1), a_(2),".........",a_(n) are in :

If a_(1) , a_(2) , a_(3),"…………."a_(n) are in A.P., where a_(i) gt 0 for all i, then the value of : (1) /( sqrt(a_(1))+sqrt(a_(2)))+ (1) /( sqrt(a_(2))+sqrt(a_(3)))+"......"+(1) /( sqrt(a_(n-1))+sqrt(a_(n))) is :

If ( a_(2)a_(3))/( a_(1) a_(4)) = ( a_(2) + a_(3))/( a_(1) + a_(4) ) = 3 ((a_(2) - a_(3))/(a_(1) - a_(4))) , then : a_(1) , a_(2) , a_(3) , a_(4) are in :

If a_(1)a_(2)a_(3)…….a_(9) are in A.P. then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is