Home
Class 12
MATHS
Find the sum of the series :tan^- 1(1/3)...

Find the sum of the series :`tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^(n-1))/(1+2^(2n-1)))+...... oo`

Text Solution

Verified by Experts

`T_(n)=tan^(-1)((2^(n-1))/(1+2^(2n-1)))=tan^(-1)((2^(n-1))/(1+2^(n)*2^(n-1)))`
`=tan^(-1)((2^(n)-2^(n-1))/(1+2^(n)*2^(n-1)))=tan^(-1)2^(n)-tan^(-1)2^(n-1)`
`S_(n)=T_(1)+T_(2)+"......."+T_(n)`
`=(tan^(-1)2^(1)-tan^(-1)2^(0))+(tan^(-1)2^(2)-tan^(-1)2^(1))+"........"+(tan^(-1)2^(n)-tan^(-1)2^(n-1))`
`=(tan^(-1)2^(n)-tan^(-1)1)`
`S_(n)=tan^(-1)2^(n)-(pi)/(4)`
`S=lim_(n to oo)S_(n)=lim_(n to oo)(tan^(-1)2^(n)-(pi)/(4))=(pi)/(2)-(pi)/(4)=(pi)/(4)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1) (1/11)+tan ^(-1)(2/12)=

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

tan ^(-1) 1+tan ^(-1) 2+tan ^(-1) 3=

Find the value of tan { cot ^(-1) ((-2)/3)}

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Find the value of tan[cos^(-1) (1/2) + tan^(-1) ( - 1/sqrt3)]

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo = pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4