Home
Class 12
MATHS
If sum(r=1)^n tr=n/8(n+1)(n+2)(n+3), the...

If `sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3),` then find `sum_(r=1)^n1/(t_r)dot`

Text Solution

Verified by Experts

`S_(n)=sum_(r=1)^(n)T_(r)=((n+1)(n+2)(n+3))/(8)`
`T_(r)=S_(r)-S_(r-1)=(r(r+1)(r+2)(r+3))/(8)-((r-1)(r+1)(r+2))/(8)`
`=((r+1)(r+2))/(2)`
`(1)/(T_(r))=(2)/(r(r+1)(r+2))=((r_+2)-r)/(r(r+1)(r+2))=((1)/(r(r+1))-(1)/(r(r+1)(r+2)))`
`sum_(r=1)^(n)(1)/(T_(r))=sum_(r=1)^(n)((1)/(r(r+1))-(1)/(r(r+1)(r+2)))`
`=sum_(r=1)^(n){((1)/(r)-(1)/(r+1))-((1)/(r+1)-(1)/(r+2))}`
`=((1)/(1)-(1)/(n+1))-((1)/(2)-(1)/(n+2))`
`=(1)/(2)+(1)/(n+2)-(1)/(n+2)=(n(n+3))/(2(n+1)(n+2))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

sum_(r=0)^(m)( n+r )C_(n)=

If t_(1)=1,t_(r )-t_( r-1)=2^(r-1),r ge 2 , find sum_(r=1)^(n)t_(r ) .

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) where T_(r) denotes the rth term of the series. Find lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r)) .

If a_n=sum_(r=0)^n1/(""^nC_r) , then sum_(r=0)^nr/(""^nC_r) equals :

Let a_(n) be the nth term of an A.P. If sum_(r=1)^(100) a_(2r) = alpha and sum_(r = 1)^(100) a_(2r-1) = beta , then the common difference of the A.P. is :

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(r=1)^(prop) t_(r ) = ( n (n +1) ( n + 2) ( n + 3))/( 8 ) , where t_(r ) denotes the rth term of a seires, then underset( n rarr prop ) ( "lim") sum_(r = 1) ^(prop ) (1)/( t_(r )) is :

Let a_(n) be the nth term of an AP, if sum_(r=1)^(100)a_(2r)= alpha " and "sum_(r=1)^(100)a_(2r-1)=beta , then the common difference of the AP is