Home
Class 12
MATHS
Let a(1) , a(2) , a(3) , "……………" be term...

Let `a_(1) , a_(2) , a_(3) , "……………"` be terms of an A.P. If `(a_(1) + a_(2) + "........" + a_(p ))/(a_(1) + a_(2) + "......." + a_(q)) = ( p ^(2))/( q^(2)) , p cancel(=)q`, then `( a_(6))/( a_(21))` equals `:`

A

`(41)/(11)`

B

`(7)/(2)`

C

`(2)/(7)`

D

`(11)/(41)`

Text Solution

Verified by Experts

The correct Answer is:
D

`:.((p)/(2)[2a_(1)+(p-1)d])/((q)/(2)[2a_(1)+(q-1)d])=(p^(2))/(q^(2))`
`implies (2a_(1)+(p-1)d)/(2a_(1)+(q-1)d)=(p)/(q)implies (a_(1)+((p-1)/(2))d)/(a_(1)+((q-1)/(2))d)=(p)/(q)`
For `(a_(6))/(a_(21)),p=11" and " q=41 implies(a_(6))/(a_(21))=(11)/(41)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

8,A_(1),A_(2),A_(3),24.

If a_(n) = (n^(2))/(2^(n)) , then find a_(7) .

If a_(1) , a_(2) , a_(3),"………."a_(n) are in H.P. , then a_(1), a_(2) + a_(2) a_(3) + "………" + a_(n-1)a_(n) will be equal to :

If a_(1),a_(2) , a_(3),"……..",a_(n) are in H.P. , then : (a_(1))/( a_(2) + a_(3) +"........."+a_(n)),(a_(2))/(a_(1) + a_(3)+"..........."+a_(n)),"......",(a_(n))/(a_(1)+a_(2)+"........"a_(n-1)) are in :

If a_(1), a_(2) ,a_(3)"….." is an A.P. such that : a_(1) + a_(5) + a_(10)+a_(15)+a_(20)+a_(24)=225 , then a_(1) + a_(2)+a_(3) +"….." a_(23) + a_(24) is :

If a_(1) , a_(2),"………",a_(n) are n non-zero real numbers such that ( a_(1)^(2) +a_(2)^(2) + "........."+a_(n-1)^(2) ) ( a_(2)^(2) + a_(3)^(2) + "........"+a_(n)^(2))le(a_(1) a_(2) + a_(2) a_(3) +".........." +a_(n-1) a_(n))^(2), a_(1), a_(2),".........",a_(n) are in :

If a_(1) , a_(2), "……………" a_(n) are in H.P., then the expression a_(1) a_(2) + a_(2) a_(3)+"…….."+ a_(n-1) a_(n) is equal to :

If a_(r ) gt 0, r in N and a_(1), a_(2) , a_(3) ,"……..",a_(2n) are in A.P. then : (a_(1) + a_(2n))/( sqrt( a_(1))+ sqrt(a_(2))) + ( a_(2) + a_(2n-1))/(sqrt(a_(2)) + sqrt(a_(3)))+"......"(a_(n)+a_(n+1))/(sqrt(a_(n))+sqrt(a_(n+1))) is equal to :

If ( a_(2)a_(3))/( a_(1) a_(4)) = ( a_(2) + a_(3))/( a_(1) + a_(4) ) = 3 ((a_(2) - a_(3))/(a_(1) - a_(4))) , then : a_(1) , a_(2) , a_(3) , a_(4) are in :

If (1 +x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … + a_(2n) x^(2n) , then a_(0) + a_(2) + a_(4) + … + a_(2n) equals