Home
Class 12
MATHS
If x,y,z are in A.P. and tan^(-1)x , tan...

If x,y,z are in A.P. and `tan^(-1)x , tan^(-1)y ` and `tan^(-1) z` are also in A.P., then `:`

A

`2x=3y=6z`

B

`6x=3y=2z`

C

`6x=4y=3z`

D

`x=y=z`

Text Solution

Verified by Experts

The correct Answer is:
D

`:.` x,y,z are in AP.
Let `x=y-d,z=y+d " " "…….(i)"`
Also, given `tan^(-1)x,tan^(-1)y,tan^(-1)z` are in AP.
`:.2tan^(-1)y=tan^(-1)x+tan^(-1)z`
`implies tan^(-1)((2y)/(1-y^(2)))=tan^(-1)((x+z)/(1-xz))`
`implies (2y)/(1-y^(2))=(x+z)/(1-xz) implies (2y)/(1-y^(2))=(2y)/(1-(y^(2)-d^(2)))`
`implies y^(2)=y^(2)-d^(2)" " [" fromEq.(i) "]`
`:. d=0`
From Eq. (i), x=y and z=y
`:. x=y=z`
Aliter
`:. x,y,z" are in AP. "" " "…….(i)"`
`:. 2y=x+z" " "........(ii)"`
Also, `tan^(-1)x,tan^(-1)y,tan^(-1)z` are in AP.
`:.2tan^(-1)y=tan^(-1)x+tan^(-1)z`
`implies tan^(-1)((2y)/(1-y^(2)))=tan^(-1)((x+z)/(1-xz))`
`implies (2y)/(1-y^(2))=(x+z)/(1-xz)=(2y)/(1-xz)" "[" from Eq.(ii) "]`
`implies y^(2)=zx`
`:. x,y,z " are in GP. "" "".........(iii)"`
From Eqs. (i) and (ii) x,y,z are in AP and also in GP, then x=y=z.
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan""pi/9,x and tan""(5pi)/18 are in A.P. and tan""pi/9,y and tan""(7pi)/18 are also in A.P., then :

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x=

If tan^(-1) x + tan^(-1) y =(pi)/(4) then...

The integral solution of : tan^(-1) x+ tan^(-1) (1/y)=tan^(-1) 3 is :

If a,b,c are in G.P and a^((1)/(x))=b^((1)/(y))=c^((1)/(z)) , prove that x,y,z are in A.P.

If tan^(-1)x + tan^(-1)y=4pi//5 , then cot^(-1)x + cot^(-1)y is equal to

If a, b, c are in A.P., a, x, b are in G.P., and b, y, c are in G.P., then (x, y) lies on :