Home
Class 12
MATHS
Let Sn=underset(k=1)overset(4n)Sigma (-1...

`Let S_n=underset(k=1)overset(4n)Sigma (-1)^((k(k+1))/2)k^2`.Then `S_n` can take value (s)

A

1056

B

1088

C

1120

D

1332

Text Solution

Verified by Experts

The correct Answer is:
A, D

`S_(n)=-1^(2)-2^(2)+3^(2)+4^(2)-5^(2)-6^(2)+7^(2)+8^(2)-"........"+(4n-1)^(2)+(4n)^(2)`
`=(3^(2)-1^(2))+(4^(2)-2^(2))+(7^(2)-5^(2))+(8^(2)-6^(2))+"........"+[{(4n-1)^(2)-(4n-3)^(2)}+{(4n)^(2)-(4n-2)^(2)}]`
`=4[2+3+6+7+10+11+"......"+(4n-2)+(4n-1)]`
`=8{(1+3+5+"......"+(2n-1)}+4{3+7+11+"........."+(4n-1)}`
`=16n^(2)+4n=4n(4n+1),n inN`
Satisfied by a and d where n=8,9, respectively.
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim""underset(k=1)overset(n)sum(k^(1//a){n^(a-(1)/(a))+K^(a-(1)/(a))})/(n^(a+1)) =

Let S_k,k=1, 2, …. 100 denote the sum of the infinite geometric series whose first term is (k-1)/(K!) and the common ration is 1/k then the value of (100)^2/(100!)+underset(k=1)overset(100)Sigma|(k^2-3k+1)S_k| is ____________

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

If z_(k)=cos.(pi)/(2^(k))+isin.(pi)/(2^(k)) , k=1,2............ , then the value of z_(1)z_(2) ...............to oo is

Let n and k be positive integers such that n ge K(K + 1)/2 . Find the number of solutions ( x_(1) , x_(2) , x_(3),………., x_(k) ) x_(1) ge 1, x_(2) ge 2, ……….. X_(k) ge k , all integers satisfying the condition x_(1) + x_(2) + x_(3) + ………. X_(k) = n .

S_(N^1) and S_(N^2) reactions are

Let S_(n) denote the sum of first n terms of an A.P. If S_(2n) = 3S_(n) , then the ratio ( S_(3n))/( S_(n)) is equal to :

A set of n values x_(1), x_(2), ….., x_(n) has standard deviation sigma . The standard deviation of n values : x_(1) + k, x_(2) + k, ……, x_(n) + k will be :

Let S(k) = 1 + 3 + 5 +...+ (2k -1) = 3 + k^2 . Then which of the following is true ?

If S_(n) = nP + (n (n - 1))/(2) Q where S_n denotes the sum of the first n terms of an A.P. , then the common difference is