Home
Class 12
MATHS
The sum of first 9 terms of the series (...

The sum of first 9 terms of the series `(1^(3))/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+"........"` is

A

192

B

71

C

96

D

142

Text Solution

Verified by Experts

The correct Answer is:
C

`T_n = (1^2 +2^2 +3^3 +...+n^3)/(1+3+5+...+(2n-1))=((n(n+1))/2)^2/((n(1+2n-1))/2)=((n+1)^2)/4`
` 1/4 (n^2+2n+1)`
`:." "S_n = 1/4(Sigman^2 +2Sigman+Sigma1)=1/4[(n(n+1)(2n+1))/6+(2n(n+1))/2+n]`
`S_9 = 1/4 [285 +90 +9] =96`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2))/(1 + 2) + (1^(2) + 2^(2) + 3^(2))/(1 + 2 + 3) + ..

The sum of n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+ (7)/(1^(2)+2^(2)+3^(2))+.. .. .. is

The sum of n terms of the series 1+(1+3)+(1+3+5)+.. .. .. is

The sum of (1^(3))/(1)+(1^(3)+2^(3))/(1+2)+ (1^(3)+2^(3)+3^(3))/(1+2+3)+.. . upto 10 terms is

Sum of 10 terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1+2^(2)+3^(2))+.. .

Sum of 25 terms of the series 1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))+.. ..

1^(3)-2^(3)+3^(3)-4^(3)+"..........." + 9 ^(3)=

Sum to n terms of the series 1+(1+2)+(1+2+3)+.. ..

Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+.....