Home
Class 12
MATHS
Prove that asqrt(loga b)-bsqrt(logb a)=...

Prove that `asqrt(log_a b)-bsqrt(log_b a)=0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2^(sqrt((log)_a4sqrt(a b)+(log)_b4sqrt(a b))-(log)_a4sqrt(b/a)+(log)_b4sqrt(a/b))dotsqrt((log)_a b)={2ifbgeqa >1 and 2^(log_a(b) if 1 < b < a

The value of a^x-b^y is (where x=sqrt(log_ab) and y=sqrt(log_ba),agt0,bgt0 and a,bne1 )

Prove that log_(3) 81- 4 =0

Prove that (log_(2)8)/(log_(3)9) =3/2

Prove that t a n(i(log)_e((a-i b)/(a+i b)))=(2a b)/(a^2-b^2)(w h e r ea ,b in R^+)

Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt0 . Prove that log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)

Given a^2+b^2=c^2 . Prove that log_(b+c)a+log_(c-b)a=2 log_(c+b)a.log_(c-b)a,forallagt0,ane1 c-bgt0 , c+bgt0 c-bne1 , c+bne1 .

Prove that log_7 11 is greater than log_(8)5 .

Prove log_(b) 1=0

Prove log_(b)b = 1