Home
Class 12
MATHS
Arrange in ascending order log(2)(x),log...

Arrange in ascending order
`log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x)`, if
II.`0ltxlt1`.

Text Solution

Verified by Experts

The correct Answer is:
which is ascending order.
Promotional Banner

Similar Questions

Explore conceptually related problems

Arrange in ascending order log_(2)(x),log_(3)(x),log_(e)(x),log_(10)(x) , if I. x gt 1 .

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

lim_(x->1) (log_3 3x)^(log_x 3)=

If f(x) = log_(a) (log_(a)x) , then f^(')(x) is

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :

If log_(4)2+log_(4)4+log_(4)x+log_(4)16=6 then x =

Solve log_4(log_3x)+log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

Differentiate the following w.r.t.x. log_(10)x+log_(x)10+log_(x)x+log_(10)10

int [sin(log_(e)x)+cos(log_(e)x)]dx =