Home
Class 12
MATHS
If x=log(2a)((bcd)/2), y=log(3b)((acd)/3...

If `x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5)` and `1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1,` then value of `N/40` is

A

40

B

80

C

120

D

160

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If log_(2) (9^(x - 1) + 7) - log_(2) (3^(x-1) + 1) = 2 , then values of x are

if cos^(-1) ((y)/(b))= n log ((x)/(n)), then

If a=log_(24)12,b=log_(36)24, c=log_(48)36 , then show that 1+abc=2bc

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If 1,(1)/(2) log_(3)(3^(1-x)+2),log_(3)(4.3^(x)-1) are in A.P., then x equals :

If y = a^((1)/(2) log_(a) cos x) , find (dy)/( dx)

If n=|__(2020) , then 1/(log_(2)n)+1/(log_(3)n)+1/(log_(4)n)+………..+1/(log_(2020)n)=