Home
Class 12
MATHS
Suppose that log10(x-2)+log10y=0 sqrtx+s...

Suppose that `log_10(x-2)+log_10y=0` `sqrtx+sqrt(y-2)=sqrt(x+y)`.
The value of y is

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

Suppose that log_10(x-2)+log_10y=0 sqrtx+sqrt(y-2)=sqrt(x+y) . If x^(2t^2-6)+y^(6-2t^2)=6 ,, the value of t_1,t_2,t_3,t_4 is

If log_(10)x + log_(10) y ge 2 , then the smallest value of x + y is :

If y = sqrt(log x +y) then dy/dx =

If y=log(sqrt(x)+sqrt(x-a)) , then (dy)/(dx) is :

If x_1,x_2 & x_3 are the three real solutions of the equation x^(log_10^2 x+log_10 x^3+3)=2/((1/(sqrt(x+1)-1))-(1/(sqrt(x+1)+1))), where x_1 > x_2 > x_3, then these are in

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)