Home
Class 12
MATHS
Suppose that log(10)(x-2)+log(10)y=0and ...

Suppose that `log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y).` Then the value of `(x+y)` is

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that log_10(x-2)+log_10y=0 sqrtx+sqrt(y-2)=sqrt(x+y) . If x^(2t^2-6)+y^(6-2t^2)=6 ,, the value of t_1,t_2,t_3,t_4 is

If log_(10)x + log_(10) y ge 2 , then the smallest value of x + y is :

If y = sqrt(log x +y) then dy/dx =

If sqrt(x)+sqrt(y)=sqrt(10) , show that (dy)/(dx)+sqrt(y/x)=0

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If y=log(sqrt(x)+sqrt(x-a)) , then (dy)/(dx) is :

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(2) + 1/y^(2) equals .

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If x,yinR^+ and log_10(2x)+log_10y=2 , log_10x^2-log_10(2y)=4 and x+y=m/n ,Where m and n are relative prime , the value of m-3n^(6) is