Home
Class 12
MATHS
Suppose that log10(x-2)+log10y=0 sqrtx+s...

Suppose that `log_10(x-2)+log_10y=0` `sqrtx+sqrt(y-2)=sqrt(x+y)`.
If `x^(2t^2-6)+y^(6-2t^2)=6`,, the value of `t_1,t_2,t_3,t_4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x = a(t+1/t), y =a(t-1/t), then dy/dx =

If (t, 2t), (-2, 6), and (3, 1) are collinear, t =

Solve the equations log_100 |x+y| = 1/2 . log_10 y - log_10 |x| = log_100 4 for x and y

If x=int_0^(y) (dt)/(sqrt(1+9t^(2))) and (d^(2)y)/(dx^(2)) = ay , then a =

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

If x = (1-t^(2))/(1+t^(2)) and y = (2t)/(1+t^(2)) then dy/dx =