Home
Class 12
MATHS
10^(logp(logq(logr(x))))=1 and logq(logr...

`10^(log_p(log_q(log_r(x))))=1` and `log_q(log_r(log_p(x)))=0`, then 'p' is equals

A

`r^(q/r)`

B

rq

C

1

D

`r^(r//p)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

IF 10^(log_p{log_q(log_rx)}) =1 and log _q{log_r(log_px)}=0 . The value of q is

IF 10^(log_p{log_q(log_r x)}) =1 and log _q{log_r(log_px)}=0 . The value of x is

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

If y = log log (log x), then dy/dx =

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If f(x) = log_(a) (log_(a)x) , then f^(')(x) is

If log_(4)2+log_(4)4+log_(4)x+log_(4)16=6 then x =

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 , then ((dy)/(dx))_(x=10) is equal to

If y = log (log x) then (d^(2)y)/(dx^(2)) is equal to