Home
Class 12
MATHS
Given a^2+b^2=c^2. Prove that log(b+c)...

Given `a^2+b^2=c^2`. Prove that
`log_(b+c)a+log_(c-b)a=2 log_(c+b)a.log_(c-b)a,forallagt0,ane1`
`c-bgt0`,`c+bgt0`
`c-bne1`,`c+bne1`.

Text Solution

Verified by Experts

The correct Answer is:
A=RHS
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove log_(b) 1=0

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Let agt0,cgt0,b=sqrtac,a,c and acne1,Ngt0 . Prove that log_aN/log_cN=(log_aN-log_bN)/(log_bN-log_cN)

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a gt 0, b gt 0 , c gt 0 are in G.P. , then : log_(a) x , log_(b) x, log_(c ) x are in :

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

Given that log_2(3)=a,log_3(5)=b,log_7(2)=c , express the logorithm of the number 63 to the base 140 in terms of a,b & c.

Prove that |(1,1,1),(bc,ca,ab),(b+c, c+a, a+b)| = (a-b)(b-c)(c-a)

If a, b, c are in geometric progression then log a^(n), log b^(n), log c^(n) are