Home
Class 12
MATHS
IF a^x=b,b^y=c,c^z=a,x=logb a^(k1),y=log...

IF `a^x=b,b^y=c,c^z=a,x=log_b a^(k1),y=log_c b^(k2),z=log_a c^(k3)`, find the minimum value of `3k_1+6k_2+12k_3`.

Text Solution

Verified by Experts

The correct Answer is:
18
Promotional Banner

Similar Questions

Explore conceptually related problems

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

lim_(x rarr 0) (log (3 + x) - log(3 - x))/(x) = k , the value of k is :

If z=x+i y, z^(1 / 3)=a-i b and (x)/(a)-(y)/(b)=k(a^(2)-b^(2)) then the value of k=

If x^(18)= y^(21) = z^(28) , then 3, 3log_(y)x, 3log_(z)y, 7 log_(x)z are in :

If 2x^(2)+2y^(2) +4x+5y+1=0 and 3x^(2)+3y^(2)+6x -7y+3k=0 are orthogonal ,then value of k is

if f(x)={((log_(e)x)/(x-1),,,x!=1),(k,,, x=1):} is continuous at x=1, then the value of k is

If x = 2k + 1 and y = k is a solutions of the equation 5x + 3y - 7 = 0, find the value of k.