Home
Class 12
MATHS
If x=1+log(a) bc, y=1+log(b) ca, z=1+log...

If `x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab`, then `(xyz)/(xy+yz+zx)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
xyz=xy+yz+zx
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = log (log x), then (d^(2)y)/(dx^(2)) is equal to

If y = log (log x) then (d^(2)y)/(dx^(2)) is equal to

Prove log_(b)b = 1

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10 , then ((dy)/(dx))_(x=10) is equal to

If x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5) and 1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1, then value of N/40 is

If y = e^(log_(e) [1 + x + x^(2) + …]) , then (dy)/(dx) =

Prove log_(b) 1=0

If a=log_(24)12,b=log_(36)24, c=log_(48)36 , then show that 1+abc=2bc

If y = a^((1)/(2) log_(a) cos x) , find (dy)/( dx)

If log_(x)a,a^(x//2) and log_(b)x are in G.P., then x equals :