Home
Class 12
MATHS
Given that log2(3)=a,log3(5)=b,log7(2)=c...

Given that `log_2(3)=a,log_3(5)=b,log_7(2)=c`, express the logorithm of the number 63 to the base 140 in terms of a,b & c.

Text Solution

Verified by Experts

The correct Answer is:
`=((2ac+1)/(2c+abc+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(3)2,log_(6)2,log_(12)2 are in :

Prove that (log_(2)8)/(log_(3)9) =3/2

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

The number log_(2)7 is :

Solve the equation log_(3)(5+4log_(3)(x-1))=2

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If log_(3)27.log_x7=log_(27)x.log_(7)3 , the least value of x is

If log_(10)5=a and log_(10)3=b ,then

Solve the equation log(3x^(2)+x-2)=2log(3x-2) .

If a=log_(24)12,b=log_(36)24, c=log_(48)36 , then show that 1+abc=2bc