Home
Class 12
MATHS
The value of (0.16)^("log"(2.5)((1)/(3) ...

The value of `(0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo))`, is

A

2

B

4

C

6

D

8

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (0.2) log _(sqrt(5)) ((1)/(4) +( 1)/( 8 ) +(1)/( 16)+"........" to oo ) is :

The value of (1)/((1+a)(2+a))+(1)/((2+a)(3+a))+(1)/((3+a)(4+a))"......." " upto " oo is (where, a is constant)

(0.4)^(-log2.5{1/3+1/(3^2)+1/(3^3)+....}

The value of lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

The value of cot ("cosec"^(-1) 5/3 +"tan"^(-1) 2/3) is :

The value of lim_(x rarr oo) (3^(x+1) - 5^(x+1))/(3^(x)-5^(x) is

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

It is given that (1)/( 1^(4) ) + ( 1)/( 2^(4)) + ( 1)/( 3^(4)) +"......" to oo = ( pi^(4))/( 90) , then (1)/( 1^(4)) +( 1)/( 3^(4)) +( 1)/( 5^(4)) + "......" to oo is :

The value of the integral int_0^(oo) log(x+1/x) (dx)/(x^2 +1) is