Home
Class 12
MATHS
If a=log(24)12,b=log(36)24, c=log(48)36,...

If `a=log_(24)12,b=log_(36)24, c=log_(48)36`, then show that `1+abc=2bc`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(3)2,log_(6)2,log_(12)2 are in :

If log_(4)2+log_(4)4+log_(4)x+log_(4)16=6 then x =

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

If log_(10)5=a and log_(10)3=b ,then

The solution set of log_(x)2 log_(2x)2 = log_(4x) 2 is :

If x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5) and 1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1, then value of N/40 is

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If log( a+c), log(c-a) , log ( a-2b+c) are in A.P., then :

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to