Home
Class 12
MATHS
log2log2(sqrt(sqrt(...sqrtsqrt2)))/(nTim...

`log_2log_2(sqrt(sqrt(...sqrtsqrt2)))/(nTimes)` is equal to

A

0

B

1

C

n

D

`-n`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 2) (sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x-2) is equal to :

lim_(x rarr 2) (sqrt(x-2) + sqrt(x) - sqrt(2))/(sqrt(x^(2) - 4)) is equal to :

7^(2log_(7)^(5)) is equal to

The value of 4^(5log_(4sqrt(2)) (3-sqrt(6))-6log_(8)(sqrt(3)-sqrt(2))) is

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

lim_(n to oo) (sqrt(1) + sqrt(2) + …… + sqrt(n))/(n^(3//2)) equals :

If y=log(sqrt(x)+sqrt(x-a)) , then (dy)/(dx) is :

Let p=underset(xto0^(+))lim(1+tan^(2)sqrt(x))^((1)/(2x)) . Then log_(e)p is equal to

Simplify 5^(log1//5^((1//2)))+log_sqrt2(4/(sqrt7+sqrt3))+log_(1//2)(1/(10+2sqrt21)) .

If y = log (log x) then (d^(2)y)/(dx^(2)) is equal to