Home
Class 12
MATHS
If log(3)27.logx7=log(27)x.log(7)3, the ...

If `log_(3)27.log_x7=log_(27)x.log_(7)3`, the least value of x is

A

`7^-3`

B

`3^-7`

C

`7^3`

D

`3^7`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

If log_(4)2+log_(4)4+log_(4)x+log_(4)16=6 then x =

If log_(10)x + log_(10) y ge 2 , then the smallest value of x + y is :

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

IF 10^(log_p{log_q(log_r x)}) =1 and log _q{log_r(log_px)}=0 . The value of x is

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

If log_(2)7=x, then x is

If xgt2 is a solution of the equation |log_sqrt3x-2|+|log_3x-2|=2 , then the value of x is

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x