Home
Class 12
MATHS
If xn > x(n-1) > ..........> x3 > x1 > 1...

If `x_n > x_(n-1) > ..........> x_3 > x_1 > 1.` then the value of `log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]`

A

0

B

1

C

2

D

undefined

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

For x > 1 , the minimum value of 2 log_10(x)-log_x(0.01) is

lim_(x->1) (log_3 3x)^(log_x 3)=

The value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,lo_(z)y,1)|=

Find domain of f(x)=log_(10)log_(10)(1+x^(3)) .

The number of solutions of : log_(4) (x - 1)= log_(2) (x - 3) is :

Differentiate the following w.r.t.x. log_(10)x+log_(x)10+log_(x)x+log_(10)10

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .

Solve the equation x^(log_(x)(x+3)^(2))=16 .

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :