Home
Class 12
MATHS
If (x(y+z-x))/log x = (y(z+x-y))/log y =...

If `(x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x)`.

A

`z^x x^z`

B

`x^z y^x`

C

`x^yy^z`

D

`x^xy^y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

x+y+z=0 Show that x^(3)+y^(2)+z^(3)=3xyz

Add: 2x(z-x-y) and 2y(z-y-x)

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

Prove that |(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)|= (x-y)(y-z)(z-x)(xy + yz + zx) .

Verify that x ^(3) + y ^(3) + z ^(3) - 3xyz =1/2 (x + y + z) [(x-y)^(2) + (y-z) ^(2) + (z-x) ^(2) ]

If x_(1) = 3y_(1) + 2y_(2) -y_(3), " " y_(1)=z_(1) - z_(2) + z_(3) x_(2) = -y_(1) + 4y_(2) + 5y_(3), y_(2)= z_(2) + 3z_(3) x_( 3)= y_(1) -y_(2) + 3y_(3)," " y_(3) = 2z_(1) + z_(2) express x_(1), x_(2), x_(3) in terms of z_(1) ,z_(2),z_(3) .

Find the product of (5x - y +z) (5x - y +z)

Show that |(x,x^(2),yz),(y,y^(2),zx),(z,z^(2),xy)|=(x-y)(y-z)(z-x)(xy+yz+zx)

If x, y, z being positive |[1, log _x y,log _x z],[log _y x,1,log _y z],[log _z x,log _z y, 1]|=