Home
Class 12
MATHS
If y = a^(1/(1-log(a) x)) and z = a^(1/...

If ` y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))`

A

`a^(1/(1+log_az))`

B

`a^(1/(2+log_az))`

C

`a^(1/(1-log_az))`

D

`a^(1/(2-log_az))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a^((1)/(2) log_(a) cos x) , find (dy)/( dx)

If f(x) = cos^(-1) [(1-(log x)^(2))/(1+(log x)^(2))] , then f^(')(e) =

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If f(x)=log ((1+x)/(1-x)) , then

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

If y = log (x + sqrt(x^(2)+1) then dy/dx =

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(2) + 1/y^(2) equals .